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Abstract

Acoustic tweezers powerfully enable the contactless collective or selective
manipulation of microscopic objects. Trapping is achieved without pretag-
ging, with forces several orders of magnitude larger than optical tweezers at
the same input power, limiting spurious heating and enabling damage-free
displacement and orientation of biological samples. In addition, the avail-
ability of acoustical coherent sources from kilo- to gigahertz frequencies
enables the manipulation of a wide spectrum of particle sizes. After an in-
troduction of the key physical concepts behind fluid and particle manipu-
lation with acoustic radiation pressure and acoustic streaming, we highlight
the emergence of specific wave fields, called acoustical vortices, as a means
to manipulate particles selectively and in three dimensions with one-sided
tweezers.These acoustic vortices can also be used to generate hydrodynamic
vortices whose topology is controlled by the topology of the wave.We con-
clude with an outlook on the field’s future directions.
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1. INTRODUCTION

Acoustic tweezers enable the collective and selective manipulation of particles and fluids with the
use of two nonlinear effects: acoustic radiation pressure and acoustic streaming. For particle ma-
nipulation, these offer complementary advantages compared to their magnetic and optical analogs.
Indeed, one of the first recognized issues with optical tweezers was that the tightly focused laser
beam heats the sample and may induce photodamage (Ashkin et al. 1986, Svoboda & Block 1994).
This limits the use of optical tweezers for manipulating biosamples, especially when substantial
forces (≥100 pN) are required. In contrast, magnetic tweezers have a low trap stiffness since the
field is rather constant at the particle scale, and most importantly, magnetic tweezers only enable
the manipulation of magnetic particles and otherwise require the target particle to be pretagged
(Neuman & Nagy 2008). All of these difficulties are overcome with acoustic tweezers: Indeed,
both acoustical and optical radiation pressures are proportional to the intensity of the incoming
wave divided by the celerity of the wave. Since the speed of acoustic waves in liquids is five orders
of magnitude smaller than light speed,much larger forces can be applied in acoustics than in optics
at the same wave intensity, therefore limiting deleterious heating (Baresch et al. 2016). Moreover,
acoustic tweezers do not require pretagging. Finally, since ultrasonic sources are available from
kilohertz to gigahertz frequencies, particles with sizes ranging from hundreds of nanometers to
millimeters can be trapped and manipulated with these devices.

These attractive features led to the early development of acoustical traps (King 1934, Sölner &
Bondy 1936). The first systems were based on plane standing waves to trap particles at the nodes
or antinodes of the wave depending on their acoustic properties. The emergence of miniaturized
transducers enabling on-chip particle trapping (Ding et al. 2012, Tran et al. 2012) has led to a
renewed interest in the field, with tremendous developments for practical applications in biology
(Ozcelik et al. 2018). On the one hand, plane standing wavefields are relevant for when only one
particle is present in the system, for the collective manipulation of multiple objects, or for parti-
cle sorting. On the other hand, the multiplicity of nodes and antinodes precludes any selectivity,
i.e., one particle cannot be moved independently of other neighboring particles. Moreover, for
three-dimensional (3D) particle trapping, the use of standing waves requires some transducers (or
reflectors) to be positioned on each side of the trapping area.

The development of selective tweezers (with the ability to manipulate particles individually)
requires that the acoustic energy be strongly localized in the area of interest. A natural idea is thus
to use focused waves, as in optics (Wu 1991). Nevertheless, one persisting difficulty impeding the
development of selective acoustic tweezers is that most particles of interest (e.g., elastic particles,
cells,microorganisms) are denser and stiffer than the fluid and hence are trapped at pressure nodes
of acoustic fields (Gorkov 1962). Thus, they are expelled from the wave focus. Another difficulty is
to obtain a 3D trap with one-sided tweezers, i.e., with a transducer located on only one side of the
manipulated samples (for obvious practical reasons). The difficulty arises since scattering forces
resulting from the interaction of the beam with the particle naturally tend to push the particles in
the direction of the wave propagation. Trapping particles in this direction with a limited aperture
of the transducer is thus a real challenge.

To solve these issues, Baresch et al. (2013a) first proposed to use some specific wavefields
called spherical (or focused) acoustical vortices. These focalized helical waves spin around a
phase singularity, wherein the intensity vanishes, leading to a pressure intensity minimum at the
focal point surrounded by a bright ring of high intensity, ensuring the existence of an acoustical
trap. These waves possess some fascinating properties: They are nondiffracting and carry orbital
momentum (Hefner & Marston 1999). Baresch et al. (2016) demonstrated the ability of such
wavefields to trap particles in 3D with a one-sided wave synthesis system. More recently, Riaud
et al. (2017a) and Baudoin et al. (2019) showed that the relatively complex transducer arrays used
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by Baresch et al. (2016) can be replaced by a single interdigitated transducer whose spiraling
shape encodes the phase of the field like a hologram, hence enabling the selective manipulation
of particles in a standard microscopy environment. These spiraling transducers are cheap, flat,
easily integrable, and compatible with disposable substrates, enabling their widespread use by
the scientific community. Other ways to synthesize acoustical vortices with a single transducer
include acoustic lenses made of metascreen (Li et al. 2015, Jiang et al. 2016) and spiral diffraction
gratings ( Jiménez et al. 2016, 2018).

Acoustical vortices enable not only particle manipulation but also fluid manipulation with the
use of acoustic streaming (Anhäuser et al. 2012, Riaud et al. 2014, Hong et al. 2015). In particular,
they enable the synthesis of hydrodynamic vortices whose topology is controlled by the topol-
ogy of the acoustical vortex and not by the boundary conditions. This might lead to tremendous
developments in microfluidics or in the fundamental study of hydrodynamic vortices.

In Section 2, we introduce the fluids mechanical concepts involved in particle and fluid manip-
ulation. Section 3 discusses the classical manipulation of particles with standing wavefields and the
numerous applications at microscales. In Section 4, we introduce some specific wavefields called
acoustical vortices and show how they can be used for 3D selective particle and fluid manipulation.
Finally, we conclude this review with an outlook on the field’s future directions.

2. NONLINEAR ACOUSTICS FOR FLUID AND PARTICLE
MANIPULATION

2.1. Nonlinear Average Equations in Acoustics

At first (linear) order, the time-averaged net force exerted on a particle and the time-averaged fluid
flow induced by an acoustic field are null. Thus, the manipulation of particles and fluids requires
second-order nonlinear effects. One of these effects, called acoustic radiation pressure, is a net
force applied at the interface between two media with different acoustic properties. This force
enables the manipulation of particles but also the deformation of fluid interfaces. A second effect,
called acoustic streaming, is flow produced by the attenuation of an acoustic wave and the resulting
transfer of pseudo-momentum from the wave to the fluid. Depending on the origin of the wave
attenuation, acoustic streaming is generally divided into bulk acoustic streaming (also called Eckart
streaming), due to thermoviscous damping of the wave in the bulk of the propagating fluid, and
boundary streaming (also called Rayleigh streaming), due to wave attenuation at the boundaries
resulting from the existence of a viscous boundary layer.

In this section, we derive a set of coupled constitutive equations that allow us to compute
(a) the nonlinear propagation of acoustic waves, (b) bulk acoustics streaming, and (c) the force
applied on a particle (resulting from acoustic radiation pressure and bulk streaming). All of these
equations are derived in the limit of low acoustic Mach number, low acoustic Reynolds number,
and low hydrodynamic Reynolds number. Since this review focuses on freely propagating waves,
boundary streaming is mostly discarded.

2.1.1. Constitutive equations. For the sake of simplicity, we consider here the case of liquids.
Hence, the starting point of the following derivation is the isentropic (see the sidebar titled En-
tropy Balance) compressible Navier–Stokes equations, wherein thermal effects are neglected,

Mass balance:
∂ρ

∂t
+ ∇ · (ρv) = 0, 1.

Momentum balance:
∂ρv
∂t

+ ∇ · (ρv ⊗ v) = −∇ p+ μ�v +
(μ
3

+ ξ
)

∇∇ · v, 2.
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ENTROPY BALANCE

The fact that viscous effects are considered in the momentum balance but not in the equation of entropy might
seem contradictory since viscous effects contribute to the increase of entropy. In fact, since viscous damping is weak
and the contribution of viscous effects to the increase of entropy is nonlinear, this approximation is consistent up
to second order. Readers are referred to Coulouvrat (1992) for a demonstration with asymptotic analysis.

Entropy balance: ds = 0, 3.

Equation of state: p = p(ρ ), with
∂ p
∂ρ

∣∣∣∣
s
= c20 and

∂2p
∂ρ2

∣∣∣∣
s
= �, 4.

where ρ, p, and v are the density, pressure, and velocity fields, respectively; μ is the dynamic vis-

cosity; ξ is the bulk viscosity; c0 is the sound speed; � equals Bc20
Aρ0

; andA = ρ0c20 and B are two classic
acoustics coefficients introduced in nonlinear acoustics.

Thermal effects (wave thermal damping and fluid heating) can be neglected in liquids com-
pared to their viscous counterparts (since they are proportional to γ − 1, where γ is the heat
capacity ratio, close to 1 in most liquids). The following theory could be nevertheless completed
to account for thermal effects.

2.1.2. Field decomposition. Following Riaud et al. (2017b), we then introduce a relevant de-
composition of each field f into a hydrostatic contribution f0 (in the absence of acoustic excita-
tion), periodic fluctuations corresponding to the acoustic wave perturbation f̃ , and time-averaged
contributions f̄ :

ρ = ρ0 + ρ̃ + ρ̄, 5.

p = p0 + p̃+ p̄, 6.

v = ṽ + v̄. 7.

This decomposition differs from the classical decomposition into a zero-, first-, and second-order
field in that acoustic wave perturbations can also contain nonlinear effects, as we see below. Since
the fluid is assumed to be at rest in the absence of acoustic excitation, v0 equals 0. Mathematically,
these fields are defined as f̄ = 〈 f − f0〉, where 〈·〉 is the time-averaging operator, and f̃ = f −
f0 − f̄ (implying 〈 f̃ 〉 = 0). We also assume f̄ � f̃ � f0.

2.1.3. Averaged equations and bulk acoustic streaming. Time averaging of the constitutive
Equations 1–4 up to second order gives

∂ρ̄

∂t
+ ρ0∇ · (v̄) + 1

c20
∇ · Ī = 0, 8.

∂

∂t

(
ρ0v̄ + 1

c20
Ī
)

+ ρ0∇ · 〈ṽ ⊗ ṽ〉 = −∇ p̄+ μ�v̄ +
(μ
3

+ ξ
)

∇∇ · v̄, 9.

p̄ = c20ρ̄ + �

2
〈ρ̃ 2〉, 10.
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where Ī = 〈 p̃ṽ〉 is the intensity vector, representing the flux of acoustic energy. These equations
are the constitutive equations of the average flow v̄ produced by an acoustic wave, which by def-
inition corresponds to acoustic streaming. By neglecting the fourth-order terms, ∇ · (v̄ ⊗ v̄), we
have neglected nonlinear hydrodynamics terms. These equations are therefore limited to slow
streaming and cannot describe turbulent flows.

Away from boundaries (and the viscous boundary layer), these equations can be simplified with
weakly restrictive hypotheses: In the mass conservation equation (Equation 8), the divergence of
the intensity vector (third term) corresponds to the viscous dissipation of acoustic energy, which
remains weak compared to inertial terms in most media at usual frequencies. This is quantified by
the so-called acoustic Reynolds number, Reac = ρc20/ωμ(4/3 + ξ

μ
), which is also the ratio between

the acoustic attenuation length, La = ρc30/ω
2μ(4/3 + ξ

μ
) (the characteristic distance of the wave

damping), and the wavelength, λ. As a consequence, the condition Reac � 1 ensures that the wave
is not attenuated over a distance comparable to the wavelength.The reverse situation only happens
in very viscous fluids or at frequencies higher than gigahertz in water. If we assume Reac � 1 and
consider only the steady average flow (after the transient state), we obtain the classical Stokes
equation,

∇ · v̄ = 0, 11.

μ�v̄ − ∇ p̄+ F = 0, 12.

with a forcing term (Nyborg 1953),

F = −ρ0∇ · 〈ṽ ⊗ ṽ〉, 13.

corresponding to the source of acoustic streaming. As expected, this source is a nonlinear average
effect resulting from the acoustic field, ṽ. Owing to its simplicity, this expression of the streaming
source term has been widely used to compute acoustic steady streaming numerically. Neverthe-
less, as we see below, this expression should be avoided, as it contains some terms that do not
contribute to bulk acoustic streaming but instead to acoustic radiation pressure, and it can lead to
large numerical errors in simulations.

2.1.4. Periodic fluctuations: nonlinear propagation of the wave. The equations of the
periodic fluctuations up to second order can be simply obtained by subtracting the average
Equations 8–10 from the constitutive Equations 1–4,

∂ρ̃

∂t
+ ρ0∇ · ṽ = −∇ · 〈〈ρ̃ṽ〉〉, 14.

ρ0
∂ ṽ
∂t

+ ∇ p̃− μ�ṽ − μb∇∇ · ṽ = ∂

∂t
〈〈ρ̃ṽ〉〉 − ρ0∇ · 〈〈ṽ ⊗ ṽ〉〉, 15.

p̃− c20ρ̃ = �

2
〈〈ρ̃ 2〉〉, 16.

where b equals 1/3 + ξ/μ and the operator 〈〈·〉〉 is defined by 〈〈 f̃ g̃〉〉 = f̃ g̃− 〈 f̃ g̃〉. The left-hand
sides of these equations correspond to the linear equations of damped acoustic waves. The right-
hand sides represent nonlinear effects affecting the propagation of the acoustic waves. Following
Riaud et al. (2017b), these equations can be combined to obtain the celebrated Kuznetsov (1970)
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equation describing the nonlinear propagation of acoustic waves,

∂2φ̃

∂t2
− c20�φ̃ − μb

ρ0

∂

∂t
�φ̃ = ∂

∂t

[
B

2Ac20
〈〈
(
∂φ̃

∂t

)2

〉〉 + 〈〈(∇φ̃)2〉〉
]
, 17.

where φ̃ is the velocity potential (ṽ = −∇φ̃). In this equation, the first two terms on the left-
hand side correspond to the d’Alembert wave equation and the third term accounts for the wave
viscous damping, while the terms on the right-hand side correspond to nonlinear effects affecting
the wave propagation. Here we assumed that ṽ equals −∇φ̃ and thus that the fluctuation field
is irrotational. This is correct away from viscous boundary layers since acoustic modes are by
definition irrotational.

The size of the contribution of the nonlinear terms to the wave propagation can be evaluated
by comparing the characteristic length of the wave propagation,Lc, to the so-called shock distance,
Ls = c20/ωβUac,whereUac is themagnitude of the acoustic velocity perturbation and β = 1 + B/2A
is the so-called nonlinear parameter. Indeed, nonlinear effects are small but nevertheless cumula-
tive. Thus, they can play a significant role over this characteristic distance. The main effect is the
generation of harmonics and the transfer of energy to these harmonics, which can eventually turn
a sinusoidal wave into an acoustical shock wave (the origin of the term “shock distance”). In many
practical applications, the nonlinear propagation terms can be neglected.

2.1.5. Simplification of the bulk streaming source term. Following Lighthill (1978) and
Riaud et al. (2017b), the streaming source term F = −ρ0∇ · 〈ṽ ⊗ ṽ〉 can be recast into a gradient
term,which does not contribute to acoustic streaming but, as we shall see later, only to the acoustic
radiation force, and another term, which is the sole source of bulk streaming,

F = −∇L̄ + ω2μb
ρ0c4

Ī, 18.

where L̄ = K̄ − V̄ is the average acoustic Lagrangian, K̄ = 1/2ρ0〈ṽ 2〉 is the average acoustic ki-
netic energy, and V̄ = 〈 p̃2〉/(2ρ0c20 ) is the average potential energy. The main assumption used to
obtain this equation is that the fluctuation field ṽ is irrotational.Then, if we introduce the dynamic
pressure of the streaming flow, p̄ s = p̄+ L̄ = c20ρ̄ + �/2

〈
ρ̃ 2

〉 + L̄, then the Stokes equation of the
streaming flow (Equation 12) can be rewritten as

μ�v̄ − ∇ p̄ s + FS = 0, with FS = ω2μb
ρ0c4

Ī, 19.

where FS is the sole source of acoustic streaming. This equation shows that, in a confined cavity,
the gradient term plays no role in acoustic streaming. It also shows, as expected, that the streaming
source depends on the wave damping (∝ ω2μb) and the average acoustic intensity, Ī.

2.1.6. Force applied on a particle and acoustic radiation force. Now that we have obtained
equations for the acoustic wave propagation and acoustic streaming, we can derive the average
force applied on a particle suspended in the fluid. This force, F̄p, is simply the time average of the
stress exerted on the moving interface Sp(t ) of the particle,

F̄p =
〈∫ ∫

Sp(t )
σ · np dS

〉
, 20.
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PARTICLE

n = –np

np

Sp(t)

Incident
wavefront

λ
R >> λ

nR

FLUID

 Surface at rest, S R

Figure 1

Geometry and notations used in the calculation of the force exerted on a particle by an incident acoustic
wave. Sp(t ) is the vibrating surface of the particle and R is the characteristic radius of a fictitious surface at
rest, SR, surrounding the particle.

where σ = −p1 + 2μD + (ξ − 2μ/3)(∇ · v)1 is the stress tensor and np is the vector normal to
the surface of the particle pointing outward (Figure 1). The difficulty of performing this integral
comes from the vibration of the particle surface induced by the acoustic wave and hence from
the fact that it is not fixed. To overcome this difficulty, we can start by introducing the flux of
momentum tensor, B = ρv ⊗ v − σ , and rewrite the momentum balance (Equation 2) as

∂ρv
∂t

+ ∇ · B = 0. 21.

Then, we can introduce a closed surface at rest surrounding the particle, SR, and integrate
this momentum equation over a volume V(t ) bounded on one side by the vibrating surface of
the particle, Sp(t ), and on the other side by the fixed surface, SR (see Figure 1). The divergence
theorem gives

∫ ∫ ∫
V(t )

∂ρv
∂t

dV +
∫ ∫

Sp(t )
B · n dS+

∫ ∫
SR

B · nR dS = 0, 22.

where n is defined as −np and nR is the vector normal to the surface at rest, SR, pointing outward
with respect to V(t ). The Reynolds transport theorem gives

∫ ∫ ∫
V(t )

∂ρv
∂t

dV = ∂

∂t

∫ ∫ ∫
V(t )
ρv dV −

∫ ∫
Sp(t )

ρvv · n dS. 23.
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Since the first term on the right-hand side vanishes when averaged over time, if we replace the
time-averaged Equation 23 into the time-averaged Equation 22, we obtain

F̄p =
〈∫ ∫

Sp(t )
σ · np dS

〉
= −

∫ ∫
SR

B̄ · nR dS, 24.

with the average momentum flux tensor equal to B̄ = ρ0 〈ṽ ⊗ ṽ〉 + (p0 + p̄)1 − 2μD̄ − (ξ −
2μ/3)∇ · v̄ up to second order. Finally considering p̄ = p̄ s − L̄ and ∇ · v̄ = 0, we obtain the fol-
lowing final expression of the force applied on a particle,

F̄p = F̄rad + F̄str, 25.

with F̄rad =
∫ ∫

SR

(−ρ0〈ṽ ⊗ ṽ〉 + L̄) · nR dS, 26.

and F̄str =
∫ ∫

SR

(− p̄ s1 + 2μD̄) · nR dS. 27.

(Since integration is performed here on a closed surface, Equations 26 and 27 are unaffected
by any constant C. This constant is nevertheless important when Rayleigh radiation pressure is
under consideration; readers are referred to Section 2.2.1 for the definition of Rayleigh radiation
pressure and Langevin radiation pressure, and to the discussion in Section 2.2.3.) As we see in
the next section, the first component of the force F̄rad is the so-called radiation force applied on
the particle, while obviously the second component of the force F̄str is simply the force applied
on the particle by the average flow, i.e., bulk acoustic streaming.

2.1.7. Nonlinear acoustics in a nutshell. As a conclusion to this section, acoustic wave prop-
agation, bulk acoustic streaming, and the force applied on a particle can be summarized by the
following set of coupled nonlinear equations,

Acoustic wave propagation (linear case):
∂2φ̃

∂t2
− c20�φ̃ − μb

ρ0

∂

∂t
�φ̃ = 0, 28.

Bulk acoustic streaming: μ�v̄ − ∇ p̄ s + FS = 0, with FS = ω2μb
ρ0c4

Ī and Ī = 〈 p̃ṽ〉, 29.

Force exerted on a particle: F̄p = F̄rad + F̄str, 30.

Radiation force: F̄rad =
∫ ∫

SR

(−ρ0〈ṽ ⊗ ṽ〉 + L̄) · nR dS, 31.

Streaming force: F̄str =
∫ ∫

SR

(− p̄ s1 + 2μD̄) · nR dS. 32.

2.2. Radiation Pressure: A Historical Perspective

The force Fp applied by a wave on a particle is at first order an oscillating phenomenon whose
temporal average is zero. The existence of a nonzero average force F̄p dates back to Kepler’s ob-
servation of the orientation of a comet’s tail with respect to the light emitted by the sun. The
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corpuscular theories of light at that time are probably responsible for the use of the term “radi-
ation pressure” to name the mean force per unit area, P̄em, due to the pressure in a gas. In this
analogy, the radiation pressure of a light wave is always perpendicular to the surface of the il-
luminated object. Maxwell was the first to propose a coherent theory of this phenomenon and
demonstrated that light can instead exert a force in its direction of propagation ( Jackson 1962). In
this theory, the radiation pressure is given by the average of the electromagnetic stress tensor. A
more correct term would therefore be the radiation stress, and this point is responsible for many
misunderstandings on this subject. This nonlinear phenomenon proportional to the square of the
electromagnetic field has (for a plane wave propagating along the z-axis) an amplitude equal to
the energy density of the wave, P̄em · z = Ēem. By analogy with point mechanics, the existence of
a nonzero mean force leads to the existence of a linear momentum carried by electromagnetic
waves. This hypothesis was later confirmed by relativity and led to the equivalence between mass
and energy that relates photon momentum and energy.

2.2.1. Radiation pressure in acoustics. It was in this historical context, just before the advent
of relativity, that Rayleigh proposed and modeled the existence of a radiation pressure for acoustic
waves in fluids. He studied the plane wave case and initially obtained an expression identical to
optics: The radiation pressure is a second-order phenomenon equal to the time-averaged acoustic
energy density, Ēa (Rayleigh 1902),

P̄a = Ēa = K̄ + V̄ . 33.

This naturally led him to postulate the existence of a linear momentum carried by an acoustic wave
and to explain the acoustic radiation pressure by an exchange of momentum, similar to optics,
following the point of view of Poynting (McIntyre 1981, Post 1960). Nevertheless, for an acoustic
wave propagating in a material medium, taking into account the nonlinearity of its state equation,
Rayleigh obtained a second expression (Rayleigh 1905, Post 1953),

P̄a = βĒa, 34.

with β = 1 + B/(2A). This expression, now called the Rayleigh radiation pressure, differentiates
the acoustic case from the optical one since the material medium must be taken into account. The
proportionality of acoustic radiation pressure and energy density was demonstrated by Altberg
(1903). The situation studied by Rayleigh corresponds to a plane wave of infinite lateral extension
or a plane mode in a waveguide. This situation is quite far from the practical case where one seeks
to manipulate solid or fluid particles completely immersed in a fluid. Langevin was the first to
propose a relevant model for this case during a colloquium. His work was nevertheless published
only nine years later by Biquard (1932a). Using the Kelvin circulation theorem, Langevin showed
that in the stationary regime, the mean pressure difference between two points O and M of a
fluid is equal to the difference of acoustic energy density between these two points, p̄LO − p̄LM =
ĒO − ĒM,where the superscript L stands for Lagrangian coordinates to differentiate fromEulerian
coordinates. Selecting for M, a point where the medium is at rest, yields

p̄L = Ēa +C, 35.

withC a constant. As a consequence, the component related to the nonlinearity of the state equa-
tion (see Equation 34) contributes only through a uniform pressure,C, which consequently cannot
give rise to any overall force for a completely immersed object since it applies on all sides of the ob-
ject. Thus, Langevin recovered Equation 33, the equivalent of the optical case, known today as the
Langevin radiation pressure. The computation in Eulerian coordinates was also made assuming
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an irrotational particle velocity and using the unsteady Bernoulli theorem,

p̄ = p̄L − 2K̄ = −L̄ +C. 36.

This was published in a second article (Biquard 1932b). These two calculations of the average
pressure in a fluid in Lagrangian and Eulerian coordinates (Equations 35 and 36) are called the first
and second Langevin relations, respectively. This last relation has been revisited by King (1934),
Richter (1940), Bopp (1940), and others. We propose here a new version. Indeed, Equation 19
yields ∇ p̄ s = 0 for an ideal fluid, so that Equation 36 is recovered from the definition p̄ s = p̄+ L̄.

At this point in history, some confusions still remained about the origin and nature of acoustic
radiation pressure: First, the average force per unit area exerted by the acoustic wave was consid-
ered at that time to be a pressure, i.e., a stress tensor equal to the identity tensor times a scalar.
Second, Rayleigh considered the linear momentum carried by an acoustic wave and its transfer to
another medium to be responsible for the radiation pressure.

2.2.2. Radiation stress tensor and acoustic momentum. This situation was reanalyzed by
Brillouin (1925a,b). A good account in English of the content of his papers, published originally
in French, can be found in his book (Brillouin 1938).

First, Brillouin challenged the existence of a momentum carried by a longitudinal acoustic
wave in a fluid, i.e., he demonstrated that acoustic waves can very well exist without any average
momentum (i.e., without any mass flow, since acoustic waves are supported by a medium and the
average momentum also corresponds to the average mass flow).

Indeed, the mean momentum in both Eulerian and Lagrangian coordinates is

ρ0v̄L = 〈ρvE〉 = 〈ρ̃ṽ〉 + ρ0v̄. 37.

Hence, a zero average momentum, i.e., a zero material velocity, v̄L = 0, does not prevent the exis-
tence of an acoustic wave (with density and velocity fields ρ̃ and ṽ, respectively) but instead leads to
a nonzero average velocity in Eulerian coordinates, v̄ = −〈ρ̃ṽ〉/ρ0. This second-order difference
between the particle velocity in Lagrangian and Eulerian coordinates, 〈ρ̃ṽ〉/ρ0 = v̄L − v̄, is called
the Stokes drift.Hence, the acoustic radiation pressure exerted by these waves cannot be explained
by an exchange of momentum between the wave and the irradiated object. The quantity 〈ρ̃ṽ〉 is
not a true momentum and should instead be called pseudo-momentum or quasi-momentum for
quasi-particles like phonons (McIntyre 1981, Peierls 1985, Thomas et al. 2017).

Second, Brillouin stated that the force exerted on the object is the integral of the Cauchy stress
on its surface oriented toward the outside (see Equation 20). In the special case of a perfect fluid,
the Cauchy stress tensor is the opposite of the pressure times the unit tensor, −p1. The radiation
force is thus the following average quantity,

F̄p = −
〈∫ ∫

Sp(t )
pnp dS

〉
= −

〈∫ ∫ ∫
V(t )

∇ p dV
〉
, 38.

where we use the divergence theorem to get the second equality. It is important to note that in
this expression, the surface Sp(t ) of the object driven by the acoustic wave deforms to follow the
vibrations of the surrounding medium and thus ensures the continuity of the normal velocity at
the interface. Since the surface elements vary in time, the average and integral operators do not
commute and p̃ will contribute to the radiation pressure. This definition of the radiation force is
difficult to use in practice. An exception is the Bjerknes force on a spherical bubble smaller than
the wavelength. At the bubble scale, the pressure gradient is assumed uniform and integration
leads to F̄p = −〈V(t )∇ p̃〉, where V(t ) is the bubble volume (Bjerknes 1906). This case illustrates
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that radiation pressure is a nonlinear phenomenon: The pressure at first order is null on average
but cannot be neglected since the surface varies with time.

Third, Brillouin substituted Lagrangian coordinates for Eulerian coordinates in this surface
integral. On the one hand, this approach allows one to recover a surface at rest to perform the in-
tegral, and on the other hand, the Cauchy stress tensor is transformed into the first Piola–Kirchoff
stress tensor. Since the surface is now fixed, the temporal average operation commutes with the
integration, and thus integrating the first Piola–Kirchoff average on the rest surface yields the
radiation pressure. The first Piola–Kirchoff stress tensor is the momentum flux in the momentum
conservation equation in Lagrangian coordinates. The averaged flux of momentum can be finite
even if the averaged momentum is null. While this definition is convenient for radiation pressure
in solids, an expression in Euler coordinates is preferable in fluids. Hence, Brillouin proposed to
use the averaged flux of momentum in Eulerian coordinates on a fixed surface surrounding the
object. He noted that going from moving surface elements to fixed ones is exactly compensated
for by subtracting the averaged Reynolds stress tensor, so that we have

F̄p = −
〈∫ ∫

Sp(t )
pnp dS

〉
= −

〈∫ ∫
SR

(p1 + ρv ⊗ v) · nR dS
〉

= −
∫ ∫

SR

B̄nR dS, 39.

where SR is a fixed surface surrounding the object (Figure 1), and

B̄ = ( p̄+ p0)1 + ρ0〈ṽ ⊗ ṽ〉 40.

for an inviscid flow. The tensorial nature of radiation pressure has been experimentally verified
by Hertz & Mende (1939) and Herrey (1955). This derivation has been generalized by Beissner
(1998) in a fluid, and the average fluxes of momentum in Eulerian and Lagrangian coordinates dif-
fer only by a curl that does not contribute to the force on a completely immersed object.The direct
derivation of Equation 39 from Equation 38, originally introduced by Hasegawa et al. (2000), uses
the Reynolds transport theorem and was presented with more generality in Section 2.1.6.

2.2.3. Integral expression of the force exerted on an immersed particle. To get an expres-
sion valid at second order, one may use the expression of the mean pressure from Equation 36 and
substitute it into Equation 40,

B̄ = −L̄1 + (p0 +C)1 + ρ0〈ṽ ⊗ ṽ〉. 41.

When the object is completely immersed in a perfect fluid (corresponding to Langevin radi-
ation pressure), the integration over a fixed surface surrounding the object cancels the uniform
part of the isotropic terms, (p0 +C)1, and hence the radiation force is obtained by the average of
the following tensor (Equation 31) (Brillouin 1936, Bopp 1940, Richter 1940, Borgnis 1953, Post
1953),

B̄ = −L̄1 + ρ0〈ṽ ⊗ ṽ〉. 42.

This tensor is completely determined by the average of a quadratic expression involving p̃ and
ṽ; hence, the radiation force on a completely immersed object does not depend on the medium
nonlinearity that is contained in the constant C. Thus we recover the features of the optical case.
This holds as long as the pressure-like term has time to relax and at equilibrium gives a uniform
pressure throughout the fluid.

However, when the wave is of infinite aperture or confined in a waveguide (corresponding to
Rayleigh radiation pressure), this isotropic uniform term plays a role.Thus the constantCmust be
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determined from the boundary conditions (Brillouin 1925a).For a plane progressive wave oriented
along the x-axis impinging upon an absorbing target whose average position is fixed, all fields
have a uniform amplitude. Hence we can deduce ρ̄ = 0 from mass conservation since the whole
volume is fixed on average. From Equation 10, we get p̄ = B/AV̄ , with B and A the two nonlinear
coefficients defined below Equation 4. Since for a plane progressive wave we have V̄ = K̄ = 1/2Ēa,
we can deduce p̄ = B/(2A)Ēa and ρ0〈ṽiṽ j〉 = Ēaδ11. Thus, the radiation stress tensor, Equation 40,
reduces to (p0 + B/(2A)Ēa )δi j + Ēaδ11. The lateral pressure is p0 + B/(2A)Ēa, while on the axis of
propagation, we get p0 + βĒa. If the outside pressure is p0, then the excess pressure from the inside
is βĒa, i.e., the Rayleigh radiation pressure, Equation 34.

2.3. Axial Radiation Force on a Sphere

As underlined above (Equation 42), the radiation pressure tensor depends only on the acoustic
field at first order. If we consider a particle irradiated by an acoustic wave, the acoustic field is
the sum of the incident and scattered field and thus it is necessary to compute the latter before
performing the integration on an arbitrary surface at rest located around the object. These two
steps have been achieved by King (1934) for a rigid sphere using Equation 36. Embleton (1954)
extended these results to the radiation pressure on a rigid sphere set at the focus of a spherical
incident wave. Yosioka & Kawasima (1955) solved the problem of a compressible fluid sphere and
then Hasegawa & Yosioka (1969) considered the case of an elastic sphere irradiated by a plane
incident wave using Equation 42. Later, the work of Embleton (1954) was generalized to take into
account the elasticity of the sphere (Chen & Apfel 1996). An essential step is the computation of
the scattered waves and hence the scattering coefficient. For an incident longitudinal plane wave
and an elastic sphere, the first derivation was made by Faran (1951). In all of these extensions,
axisymmetry was used to considerably simplify the task (Hasegawa et al. 1981).Mathematically, the
displacement vector in the elastic spherical particle can be decomposed into a scalar and a vector
potential using Helmholtz decomposition. For an incident longitudinal plane wave propagating
along the z-axis, the axial symmetry allows one to introduce only one component of the vector
potential in spherical coordinates, A = (0, 0,A(r, θ )). The complete problem is thus reduced to
two scalars, both solutions of Helmholtz’s equation. The two potentials are then written as an
infinite sum of spherical modes without azimuthal dependence. The boundary conditions at the
sphere surface provide the relation between incident and scattered waves for each spherical mode.
Importantly, only the force component in the beam direction can be calculated with this approach.
These two limitations (axial symmetry and force component in the beam direction) prevented
the use of these models for tweezer investigations and led only to experimental confirmation of
theory in academic configurations (Klein 1938, Hasegawa 1977, Rudnick 1977), local acoustic
fields measurements complementary of radiation force balance (Rooney 1973), and levitation traps
(Sölner & Bondy 1936).

2.4. Bulk Acoustic Streaming: A Historical Perspective

As with the history of acoustic radiation pressure, the history of acoustic streaming also starts with
the work of Rayleigh (1884). Inspired by Faraday’s (1831) and Dvorak’s (1874) observations of the
flows produced by vibrating plates andKundt tubes,Rayleigh developed the first theory of the flow
induced by an acoustic wave damped by its interactions with the walls of a tube. In this first type of
acoustic streaming, the flow results from the wave damping induced by shear stresses in the viscous
boundary layer, where the fluid velocity decays to match the velocity of the boundary. This type of
streaming is now called boundary streaming or Rayleigh streaming. Later on, with the advent of
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piezoelectric generators,many scientists have reported strong flows of air or liquid in the direction
of the acoustic wave propagation, termed quartz wind. It was first demonstrated by Eckart (1948)
(for liquids) that, in this case, the flow results from the viscous attenuation of the wave in the bulk
of the fluid. Indeed, for liquids, the bulk viscous damping is dominant, while in gases, both thermal
and viscous damping contribute to acoustic streaming. This second type of acoustic streaming is
now called bulk streaming or Eckart streaming. Eckart obtained his results (a) by developing the
compressible isentropic Navier–Stokes equations into zero-order, first-order (linear), and second-
order (nonlinear) contributions; (b) by combining the mass and momentum equations at second
order; and (c) by separating the second-order terms contributing to the nonlinear propagation
of the wave from the one contributing to an incompressible flow by taking the divergence and
curl of these combined equations, respectively. In this way, Eckart obtained an unsteady diffusion
equation for the vorticity (curl of the velocity) at second order, �2 = ∇ × v2, corresponding to
acoustic streaming,

∂�2

∂t
− μ

ρ0
��2 = bμ0

ρ3
0

∇ρ1 × ∇ ∂ρ1
∂t

, 43.

where ρ1 is the density variation at first order (corresponding to the acoustic wave) and v2 is
the velocity field at second order. He then applied this equation to compute the flow produced
in an infinite tube by a weakly attenuated wave of finite aperture propagating along the axis of
the tube without lateral interaction with the walls. His theory was verified experimentally soon
after by Libermann (1949), who nevertheless noticed some differences with Eckart’s theory at
large Reynolds number. Indeed, all of these theories based on asymptotic development are only
valid for slow streaming flow (low hydrodynamic Reynolds numbers associated with the steady
flow). On the one hand, the advantage of Eckart’s formulation is that it does not rely on time av-
eraging, and thus these equations allow one to describe unsteady bulk streaming. On the other
hand, these equations describe the evolution of the vorticity field, thus it is sometimes diffi-
cult to express the boundary conditions in terms of vorticity, and the derivation of the velocity
field from the vorticity field requires one to solve another set of differential equations. Nyborg
(1953) proposed a formulation corresponding to a Stokes equation with a source term at the ori-
gin of the acoustic streaming (corresponding to Equations 11–13). While mathematically sound,
his formulation of the source term is to proscribe numerically since it contains some potential
terms (see Equation 18) that do not contribute to acoustic streaming but can be several orders
of magnitude larger than the actual source term. Thus, small numerical errors in the gradient
terms can lead to numerical acoustic streaming resulting from numerical dissipation. Lighthill
(1978) identified this gradient term, and later Riaud et al. (2017b) isolated the sole source of
bulk acoustic streaming and expressed it as a function of the intensity vector (see Equation 19).
These authors also demonstrated that the bulk streaming source term can be spatially filtered,
as the small structures of the acoustic field do not contribute to acoustic streaming. Westervelt
(1953) extended Eckart’s work and reconciliated bulk and boundary streaming in a single formu-
lation. He showed that his formulation allows one to recover these two types of streaming as limit
cases.

Since these pioneering works on bulk streaming, many effects have been studied, such as tran-
sient streaming (Rudenko 1971), the influence of diffraction by the edges of the beam (Kamakura
1996,Moudjed et al. 2014), the effect of the nonlinear propagation of the wave (Romanenko 1960,
Stanikov 1967), weakly nonlinear flows at intermediate Reynolds numbers in the limit of the con-
servation of the flow symmetry (Gusev & Rudenko 1979), and, more recently, the effect of fluid
inhomogeneity (Karlsen et al. 2016). However, despite these efforts, a proper theory of fast acous-
tic bulk streaming at high Reynolds numbers is still lacking. In this short historical review, we

www.annualreviews.org • Acoustic Tweezers 217

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

02
0.

52
:2

05
-2

34
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

20
01

:6
20

:6
18

:5
a0

:2
:8

0b
3:

0:
6a

 o
n 

04
/0

2/
23

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



FL52CH09_Baudoin ARjats.cls December 7, 2019 15:0

do not cover the extensive fields of the flow produced by the interaction of a sound wave with a
particle or a bubble, nor do we treat the steady streaming produced by incompressible alternative
flows (Riley 2001).

3. ACOUSTICAL TRAPS AND COLLECTIVE MANIPULATION
WITH STANDING WAVES

3.1. Historical Development of the Field

While the first theoretical works on radiation pressure were performed in optics, the first effec-
tive setups for particle trapping were developed in acoustics. The main reason for this was the
availability of a powerful coherent source that appeared later in optics than in acoustics with the
development of lasers. Thus, the collective manipulation of particles with standing waves has a
long history going back to Chladni figures and Kundt tubes. Chladni figures illustrate that very
small particles are driven mostly by acoustic streaming, while the radiation force dominates for
larger particles (Hagsäter et al. 2007). The relation between these standing wave acoustical traps
and radiation pressure, as modeled by King (1934), was clearly established by Sölner & Bondy
(1936). Allen & Rudnick (1947) observed the levitation of different items in standing and pro-
gressive waves in air using a very powerful siren operating at 25 kHz. They noted that while
relatively large objects could be levitated by a standing wave, the trap was unstable for progressive
waves. The levitation of bubbles in liquid columns vibrating at low frequency was also observed
and explained by the Bjerknes force (Bucchanan et al. 1962, Baird 1963). Piezoelectric sources
working at higher frequencies were used thereafter to excite the resonant mode of a cylindrical
cavity and levitate a single bubble at the pressure antinode at low frequencies (Eller 1968, Gould
1968). Thereafter, these levitation traps were used to study the surface tension and phase tran-
sition of liquid drops (Apfel 1981). Levitation traps were developed both in liquid and in air. In
air, the radiation force in acoustics is strong enough to levitate millimeter beads of iridium, the
material with the highest density (Xie & Wei 2002). The observation of agglomeration of red
blood cells was related to acoustic standing wavefields, and it was initially used to assess potential
detrimental hazards in medical imaging (Baker 1972). When many particles are involved and in-
teract, there are several forces at play and the discrimination can be be rather complex (Coakley
et al. 1989). Nevertheless, it was recognized that radiation pressure in standing waves could
be used for both the harvesting and manipulation of small particles (Schram 1984, Whitworth
et al. 1991) using modulation of either phase or amplitude of the two counter-propagating plane
waves.

3.2. Radiation Force on Drops and Elastic Spheres
in the Long-Wavelength Regime

The most common expression of the radiation force induced by standing waves assumes (a) spher-
ical particles and (b) excitation in the long-wavelength regime (i.e., when the wavelength is much
larger than the size of the particle). For bubbles, the force is described by the Bjerknes formula.
Gorkov (1962) developed a model that is used today in most acoustic traps for the case where the
contrast of the compressibility and density between the particle and the surrounding fluid is not
too high (e.g., elastic particles or drops in a liquid).

Since the sphere radius is very small compared to the wavelength, k0a � 1, the monopole and
dipole scattering dominate, and Gorkov (1962) obtained the following simple expression from a
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multipole expansion,

F̄p = −∇ (
αmV̄ − αdK̄

)
, 44.

with αm = 4
3
πa3

(
1 − K0

Kp

)
and αd = 4πa3

(
ρp − ρ0

2ρp + ρ0

)
.

In this formula, K0 = ρ0c20 and Kp = ρp(c2l − 4/3c2t ) are respectively the bulk elasticity of the fluid
and the particle, cl and ct are respectively the particle longitudinal and transverse wave speeds, ρ0
and ρp are respectively the fluid and particle densities, and a is the radius of the particle. Here, the
potential acoustic energy, V̄ , and the kinetic acoustic energy, K̄, are computed with the amplitude
of the linear incident field at the sphere location. In this expression, the radiation pressure is
a potential force that depends on the incident linear fields and the acoustic contrast factor in
compressibility and density. This approximation based on a Taylor expansion is valid as long as
the kinetic and potential energies are not uniform in any direction. Since this contribution to the
radiation force relies on the gradient of the field, it is generally called the gradient force.This is the
case encountered in standing waves. On the contrary, this force cancels out for a plane progressive
wave, and the Taylor development must be carried out at the next order. This case was also studied
by Gorkov (1962), and in this case, the force is no longer a gradient force but instead a scattering
force. In a real fluid, viscosity corrections can be important (Settnes & Bruus 2012), and thermal
dissipation has also been considered (Karlsen & Bruus 2015).

3.3. Particle Micromanipulation with Radiation Force

Today, a very active field of research combines acoustic standing waves with microfluidics. Many
promising biological applications have been developed to separate, concentrate, and manipulate
particles, particularly biological cells, in a label-free environment and with high throughput. The
literature on this topic is quite extensive and outside the scope of this review; interested readers
are referred to existing reviews on the subject (Lenshof & Laurell 2010, Ding et al. 2013, Yeo &
Friend 2014, Ozcelik et al. 2018).We can nevertheless highlight three interesting recent develop-
ments of the field: (a) the miniaturization of tweezers to manipulate micron-size particles and in
particular biological cells with the use of surface acoustic waves (Ding et al. 2012,Tran et al. 2012);
(b) the theoretical (Hasegawa 1979, Silva et al. 2019), experimental (Collins et al. 2015, Silva et al.
2019), and numerical (Glynne-Jones et al. 2013, Habibi et al. 2017, Baasch & Dual 2018) study of
standing waves traps beyond the long-wavelength regime; and (c) the investigation of the torque
applied on nonspherical particles trapped at the nodes of standingwavefields (Schwartz et al. 2013).
With standing waves, individual particle manipulations are limited by two adverse effects that for-
bid selectivity. First, standing waves generate trap locations at each node, antinode, or midpoints
(in 2D configurations) depending on the acoustic contrasts of density, compressibility, and the
size of the particles (see, e.g., Silva et al. 2019), hence preventing the trapping of one particle in-
dependently of other neighboring particles (Figure 2). Second, the size and stiffness of the trap
is determined by the wavelength, and most of these setups are designed in the long-wavelength
regime.

4. SELECTIVE ACOUSTIC TWEEZERS AND STIRRERS

4.1. Spatial Localization of the Acoustic Energy and Acoustical Vortices

The selective manipulation of a particle, i.e., its manipulation independent of other neighboring
particles, can only be achieved through spatial localization of the trap (and hence the acoustic
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Figure 2

Amplitude (a) and phase (b) of a two-dimensional standing wavefield of the form � = 1/2[sin(kx) + sin(ky)]exp(iωt ) represented at a
given time t, where k = ω/c0 is the wave number, ω is the angular frequency, and c0 is the sound speed. Such wavefields are classically
used to trap microscopic particles in two dimensions (e.g., Ding et al. 2012, Tran et al. 2012). Depending on the properties of the
particles (density, compressibility, and size) and of the surrounding medium, particles can be trapped either at the pressure nodes,
antinodes, or midpoints situated along the nodal line at equal distance between two nodes (see, e.g., Silva et al. 2019). In any case, due to
the multiplicity of trapping points and the absence of energy localization, a single particle cannot be moved independently from other
neighboring particles. Thus, all particles present in the system are moved collectively with such wavefields.

energy) near the particle. A natural idea to achieve such localization is to use laterally or radially
focalized waves (for 2D and 3D selective trapping, respectively). This solution, adopted in optics,
is also valid in acoustics for particles attracted at the pressure antinodes of an acoustic standing
wave field, such as particles less dense and more compressible than the surrounding liquid (see
Equations 44 and 45). Nevertheless, particles more stiff and more dense than the surrounding
liquid, such as solid particles, cells, and most droplets, migrate toward the pressure nodes of a
standing wavefield (Gorkov 1962). Such particles would be expelled from the focus of a focalized
wave,which precludes the use of focused waves to trapmost particles of practical interest. For such
particles, to ensure particle trapping it is necessary to concentrate the energy, but with a minimum
at the wave focus surrounded by a ring of high intensity.

4.1.1. Cylindrical vortices. For 2D particle trapping, this apparently paradoxical problem can
be solved by using some specific wavefields called cylindrical acoustical vortices (Figure 3). These
wave structures are called acoustical vortices (similar to optics where they are called optical vor-
tices) or helical acoustic waves owing to their helical wave front spinning around a phase singular-
ity, whose phase structure resembles a hydrodynamic vortex.Nevertheless, since they are solutions
of the wave equation, they do no carry any vorticity. This class of waves was originally introduced
by Nye & Berry (1974) when they studied wave phase singularities and, in particular, so-called
screw dislocations.The phase singularity on the central beam axis ensures a canceling of the ampli-
tude on this axis, surrounded by a bright ring that can be used to trap particles laterally (Courtney
2014). In the field of acoustics, acoustical vortices were first introduced (and experimentally syn-
thesized) by Hefner &Marston (1999).Mathematically, these wave structures can be simply intro-
duced as a set of separated variable solutions in cylindrical coordinates, �(r, θ , z) = f (r)g(θ )h(z),
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Figure 3

Bessel cylindrical vortices. (a) Equiphase surface of a Bessel cylindrical vortex (of topological order l = 1 and cone angle β = π/4). The
color field corresponds to the pressure amplitude. The axial component kz, the lateral component k⊥, and the total wave vector
k = kz + k⊥ are shown. Note that k⊥ turns around the wave axis as the wave propagates along z-axis. (b) Equiphase surfaces of a
cylindrical vortex (of topological order l = 1) for different cone angles β = arctan k⊥/kz. As the cone angle increases, the lateral
evolution of the vortex is more rapid while its axial evolution is slower. (c) Lateral evolution of the amplitude and phase. The amplitude
vanishes at the z-axis, and this central minimum is surrounded by a ring of high intensity. Then the field is a succession of bright rings
(high amplitude) of decreasing intensity and dark rings (low amplitude). Inside the first ring, the phase evolves from 0 to 2π when θ
goes from 0 to 2π , with a phase singularity at the center. Laterally the phase undergoes some phase jump of π each time the sign of the
Bessel function Jl (kr) changes. (d) Equiphase surfaces of Bessel cylindrical vortices of different topological orders l = 1, l = 2, and l = 3.

of the wave equation in the Fourier space, i.e., the Helmholtz equation,

��+ k2� = 0 ⇐⇒ 1
r
∂

∂r

(
r
∂�

∂r

)
+ 1
r2
∂2�

∂θ2
+ ∂2�

∂z2
+ k2� = 0.

Indeed, an orthogonal set of solutions of this equation, which we term Bessel cylindrical vortices,
is given by

�(r, θ , z, t ) = A Jl (k⊥r) exp[i(lθ + kzz− ωt )], 45.

where A is the amplitude of the vortex, Jl is the cylindrical Bessel function of the first kind of
order l , k is the wave vector, k = ‖k‖ = ω/c0 is the wave number, c0 is the speed of sound, l ∈ Z

is an integer called the topological charge, kz = k · z is the projection of the wave vector over the
propagation axis z, and k⊥ is defined as

√
k2 − k2z (see Figure 3 for a visual representation of the

different parameters). These beams are defined by three parameters: their angular frequency ω,
their topological order l , and the so-called cone angle β = arccos(kz/k), which defines the angle
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between the wave vector k and the propagation axis z. For l = 0, the field becomes invariant
over θ and the lateral evolution is given by J0(kr), which exhibits a maximum at r = 0. Thus,
this wavefield is not a vortex but simply a laterally focalized wave. Thus, vortices only refer to
beams of topological order |l | > 1. These waves are propagative over θ and z and stationary over
r, with a lateral evolution given by the Bessel function. Bessel functions of order |l | > 1 all exhibit
a minimum at r = 0 and then oscillate inside a decreasing envelope, evolving as 1/

√
r.

These waves have good properties for lateral trapping of particles. Indeed, the canceling of the
Bessel function Jl (k⊥r) of order |l | > 1 at r = 0 and then its increase up to a maximum creates a
gradient trap that keeps the particle at the center.

Some asymptotic forms of these Bessel beams exist in the approximation of small conical angles
(β � 1) between the wave number and the propagation axis, i.e., in the so-called paraxial approx-
imation. The solutions of the paraxial approximation of the Helmholtz equation are the so-called
Laguerre–Gaussian beams, which take the form

�(r, θ , z, t ) = A
w(z)

[ √
2r

w(z)

]|l |

L|l |
p

[
2r2

w(z)2

]
exp

⎧⎨
⎩ −r2

w2(z)

+ i
[
lθ + (2p+ |l | + 1) arctan

(
z
zR

)
− r2kz

2(z2 + z2R)

] ⎫⎬
⎭,

where L|l |
p is the associated Laguerre polynomial, w(z) = w0

√
1 + z2/z2R is the beam width at po-

sition z along the wave propagation axis, w0 is the beam waist, zR = πw2
0/λ is the Rayleigh range,

λ is the wavelength, and (2p+ l + 1) arctan(z/zR) is the Gouy phase. These waves are common
in optics since Gaussian beams are good approximations of the field produced by a laser. Their
intensity is mostly localized close to the beam axis since their amplitude decreases exponentially
as exp[−r2/w2(z)] with a radial extent equal to w(z). Thus, these waves do not carry an infinite
energy and can be synthesized experimentally (contrary to their Bessel counterpart).

Finally, if we push the approximation of Bessel beams to vanishing conical angles β → 0, then
we have kz → k and k⊥ → 0 and Bessel cylindrical vortices turn into so-called R-vortices,

� = A rl ei(lθ+kz−ωt ).

It is interesting to note (as demonstrated by Fan & Zhang 2019) that at small cone angles, the axial
component of the acoustic velocity can contribute significantly to the kinetic energy and hence to
the radiation force. This can lead to a reverse behavior wherein particles denser and stiffer than
the surrounding medium are trapped at the center of Bessel beams of topological order m = 0,
that is, at the pressure maximum of laterally focalized waves.

Cylindrical vortices are interesting for lateral (x, y) particle trapping. Nevertheless, as a con-
sequence of their invariance in the z-direction, they can only push or pull the particles in this
direction (Marston 2006, 2009; Baresch et al. 2013b; Fan & Zhang 2019; Gong et al. 2019).

4.1.2. Spherical or focused vortices. As first proposed by Baresch et al. (2013a), one way to
obtain a 3D localized trap is to use the spherical analogs of cylindrical acoustical vortices, the
so-called spherical vortices (also sometimes termed focused vortices) (Figure 4a). Indeed, these
wavefields focalize the energy in three dimensions, while maintaining a minimum at the focal
point. These fields, like their cylindrical counterparts, are a set of orthogonal separate-variable

222 Baudoin • Thomas

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

02
0.

52
:2

05
-2

34
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

20
01

:6
20

:6
18

:5
a0

:2
:8

0b
3:

0:
6a

 o
n 

04
/0

2/
23

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



FL52CH09_Baudoin ARjats.cls December 7, 2019 15:0

S
O

U
R

C
E

α = 45°

Bessel spherical vortex

Amplitude (x, y)

Amplitude (x, y)

Phase (x, y)

Phase (x, y)

x

y

x

y
3

2

1

0

–1

–2

–3

Phase
(a.u.)

x

y

z

y

x

y

Amplitude (y, z)

Amplitude ( y, z)
(zoom)

z

yAmplitude
(a.u.)

0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0

a

i ii iii

One-sided spherical vortex
S O U R C E

Amplitude (x, y)

Phase (x, y)

x

y

x

y

F O C A L  P L A N E

F O C A L

P L A N E

c

Hankel spherical vortex
b

z

y

Figure 4

Spherical vortices of topological order (l ,m) = (1, 1). (a) Amplitude and phase of a Bessel spherical vortex, corresponding to
Equation 46. (b) Isophase surface of a converging Hankel vortex. (c) Amplitude and phase of a one-sided spherical vortex; α corresponds
to the aperture of the source. The amplitude in the (y, z) plane shows the focalization of the vortex; the amplitude and phase in the
(lower left) source plane (x, y) and in the (lower right) focal plane are also shown.

solutions of the Helmholtz equation, but in spherical coordinates (r, θ ,ϕ),

�(r, θ ,ϕ) = A jl (kr)Pml (cos θ ) exp [(i(mϕ − ωt )], 46.

where jl (kr) is the spherical Bessel function of the first kind of order l ∈ Z, Pml is the associ-
ated Legendre polynomial of order (l , m), and m is the topological charge, an integer satisfying
−l ≤ m ≤ l . Similar to cylindrical vortices, the field is invariant over ϕ for a topological charge
m = 0, and thus the wavefield is no longer a vortex but simply a focalized wave. In particular, the
case (m, l ) = (0, 0) corresponds to a spherically focused wave. Thus, we refer to spherical vortices
as waves with topological order |m| ≥ 1. These waves are stationary in r and θ and propagative
over ϕ. The central phase singularity is surrounded by a toroidal bright shell, which provides a
good framework for 3D trapping (Figure 4a, subpanel i). We can nevertheless note that the z-
axis remains a specific axis around which the phase is spinning (Figure 4a, subpanel ii). This
specificity can also be seen in Equation 46, since θ is the angle with respect to the z-axis. Owing to
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the phase singularity over this axis, the amplitude cancels all along the axis (Figure 4a, subpanel
iii), leading to a weaker trap in this direction.

Spherical vortices carry a finite amount of energy, but their synthesis requires one to posi-
tion transducers all around a closed surface surrounding the vortex center. Since this is not fea-
sible in most practical situations, one idea is to synthesize a wave that is as close as possible to a
spherical vortex, but with a finite aperture. In the following we call such wavefields one-sided
spherical vortices (see Figure 4c). Similar to how a plane standing wave A cos(kx) exp(−iωt )
can be decomposed into two counter-propagating progressive waves, A/2 exp(ikx− ωt ) +
A/2 exp(−ikx− ωt ), an important element needed to synthesize one-sided spherical vortices is
the decomposition of a Bessel spherical vortex into Hankel converging and diverging spherical
vortices,

A jl (kr)Pml (cos θ ) exp [(i(mϕ − ωt )] = A
2

[
h(1)l (kr) + h(2)l (kr)

]
Pml (cos θ ) exp [i(mϕ − ωt )],

where h(1)l is the Hankel function of the first kind corresponding to the converging part and h(2)l
is the Hankel function of the second kind corresponding to the diverging part.

Thus a one-sided spherical vortex can be generated by synthesizing a section of a Hankel con-
verging vortex (Baudoin et al. 2019) (see Figure 4b for a representation of the isophase surface
of a Hankel vortex). This is possible with a system controlling the phase or the amplitude of a
vibration on a given surface (which can be for example a portion of a sphere or a plane).Figure 3c
gives an example of a one-sided spherical vortex synthesized from a control disk (wherein the am-
plitude and phase of the intersection of a Hankel spherical vortex with this disk is imposed). In this
example, the aperture angle is 45◦ and the distance between the source and the focal plane is 20λ.
This example shows that the interference between the convergingHankel vortex and the diverging
Hankel vortex initiated at the passage through the focal point produces a standing gradient trap in
the z-direction (see Figure 4c, subpanel ii). Nevertheless, since the signal is generated from only
one side, the progressive part of the wave along the z-axis tends to push the particle away from the
center in the direction of the wave propagation. This is this competition between the axial push-
ing force and the gradient restoring force, which makes the 3D trapping of particles particularly
challenging. In addition, acoustic streaming can also contribute to push the particle away from
the trap. In the field of acoustics, Baresch and coworkers were the first to demonstrate theoreti-
cally (Baresch et al. 2013a) and experimentally (Baresch et al. 2016) the ability of these beams to
trap particles in three dimensions in theMie regime. Interestingly, in the long-wavelength regime,
Marzo et al. (2015) have shown through an optimization algorithm that acoustical vortices are op-
timal wavefields for 3D particle trapping for a given array of transducers with phase control. They
have also demonstrated that two other types of wavefields, namely bottle traps and twin traps, are
optimal for trapping in the direction of propagation and in one lateral direction, respectively.

4.2. Selective Particle Manipulation

In Section 2.3,we saw that the scattering coefficients were computed assuming axial symmetry. For
a spherical particle, this assumption restricts the model to incident plane waves or spheres located
at the focus of a spherical incident beam. Either a transversely polarized plane wave or acousti-
cal vortices break the axial symmetry. Scattering of plane electromagnetic waves by a dielectric
sphere has a known solution: the Lorenz–Mie theory. The Debye potentials are here particularly
well suited for spherical particles. This case has also been studied for acoustic waves propagating
in solids (Einspruch et al. 1960, Gaunard & Überall 1978), but the incident wave is always a plane
wave, a case irrelevant for tweezers. To go further, researchers have developed two main methods
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in optics. The first is to decompose the incident wave into plane waves and then use the previous
results for each plane wave mode. The second method, called generalized Lorenz–Mie theory,
looks for a decomposition of the arbitrary incident wave into a series of modes of the wave equa-
tion, generally the spherical basis (Maheu et al. 1987, Barton et al. 1988). This approach led to
the first analytic results for radiation pressure exerted by an arbitrary beam on a dielectric sphere
(Barton et al. 1989, Ren et al. 1994).

In acoustics, the growing interest in the manipulation of contactless particles has motivated
research in this direction. The first method was used first, and the case of a particle located along
the axis of propagation of an incident acoustic beam was modeled. Examples include axisymmetric
beams (Marston 2006) or the more complex wave fronts of a helical Bessel beam (Marston 2008,
2009). The case of an arbitrary incident beam was addressed later (Sapozhnikov & Bailey 2013)
and led to a complete expression of the radiation force.

The second strategy has also been adapted to acoustics and requires three steps. First, a sep-
arated variable solution of the Helmholtz equation in free space and in spherical coordinates is
well known,

φ(r,ω) = φa

∞∑
n=0

∑
|m|<n

Am
l P

m
l (cos θ ) exp(imϕ) jl (k0r). 47.

The series coefficients Am
l are called the beam shape coefficients. Using normalized spherical

harmonics, defined by Y m
l = √

(2l + 1)(l −m)!/4π (l +m)!Pml (cos θ ) exp(imϕ), leads to another
equivalent set of beam shape coefficients, Âm

l . The term φa is an optional factor used to obtain
dimensionless beam shape coefficients. Previous theories (King 1934, Hasegawa et al. 2000) as-
sumed azimuthal symmetry and hence m = 0. By assuming linear scattering and a spherical basis
centered on the spherical scatterer, one can see that the beam shape coefficients of the scattered
wave are proportional to the incident ones, Rml A

m
l . However, the boundary conditions, i.e., spher-

ical divergence of the scattered wave, lead to the replacement of Bessel functions by Hankel func-
tions of the first kind. As with Hasegawa et al. (2000), the integration of Equation 42 can then be
performed on a fixed spherical surface located in the far field. This generalization was achieved
independently by Silva (2011) and by Baresch et al. (2013b). At this stage, Am

l and Rml are two sets
of unknown coefficients, and identifying them is the last step required to compute the radiation
force. The beam shape coefficients are defined by a scalar product of the field and the spherical
harmonics. However, they are functions of the position of the sphere and hence their numerical
evaluation in a 3D domain is time consuming and requires high precision.Different strategies exist
to alleviate this problem (Gouesbet et al. 2010). An effective solution used in optics is to translate
and rotate the spherical basis using the addition theorem to trace the sphere and obtain the new
coefficients. This solution was adapted to acoustics by Baresch et al. (2013b). Lastly, to complete
the generalization of Hasegawa & Yosioka (1969) to arbitrary incident beams, one must compute
the scattering coefficients, Rml . This last step was also carried out by Baresch et al. (2013b). The
axisymmetry and the resulting simplification made before are no longer valid (see Section 2.3).
The acoustic displacement field inside the elastic particle can be decomposed into three scalar po-
tentials, one for the longitudinal waves φ and two for the Debye potentials for shear waves ψ and
χ , with A(r, θ ,ϕ) = ∇ ∧ ∇ ∧ (rψ ) + ∇ ∧ (rχ ). These potentials are solutions of the Helmholtz
scalar equation and thus can be written as a series of spherical functions, as above. Compared to
incident plane waves, the boundary conditions lead to a system of four linear equations relating
the four potentials, one in the fluid and three in the elastic particle. This system is actually made
up of one independent equation describing one of the shear elastic modes. Therefore, this mode
cannot be excited by an incident longitudinal wave. The remaining system of three equations is

www.annualreviews.org • Acoustic Tweezers 225

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

02
0.

52
:2

05
-2

34
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

20
01

:6
20

:6
18

:5
a0

:2
:8

0b
3:

0:
6a

 o
n 

04
/0

2/
23

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



FL52CH09_Baudoin ARjats.cls December 7, 2019 15:0

identical to the one obtained by Faran (1951). As a consequence, the azimuthal dependence can be
dropped, Rml = Rl . The complete model of Baresch et al. (2013b) led to the first numerical study
of the radiation pressure exerted by an arbitrary field on an elastic spherical particle. It used Am

l
and, to facilitate comparison with Sapozhnikov & Bailey (2013) and Silva (2011), the radiation
force expression is rewritten here with the Âm

l set,

Fx = −〈Ṽ 〉a
k20

∞∑
n=0

∑
|m|<n

�
(
Q−m
n Âm∗

l Âm−1
l+1 Cn +Qm

n Â
m
l Â

m+1∗
l+1 C∗

n

)
, 48.

Fy = +〈Ṽ 〉a
k20

∞∑
n=0

∑
|m|<n

�
(
Q−m
n Âm∗

l Âm−1
l+1 Cn + Qm

n Â
m
l Â

m+1∗
l+1 C∗

n

)
, 49.

Fz = −2
〈Ṽ 〉a
k20

∞∑
n=0

∑
|m|<n

�
(
Tm
n Â

m∗
l Âm

l+1Cn
)
, 50.

where 〈Ṽ 〉a = k20ρ0|φa|2/4 = |pa|2/(4ρ0c20 ) is a dimensional factor. It should be replaced
by 1/(4ρ0c20 ) if φa is not introduced in the spherical decomposition of the incident
field (Equation 47). The terms Qm

n = √
(n+m+ 1)(n+m+ 2)/

√
(2n+ 1)(2n+ 3) and Tm

n =√
(n+m+ 1)(n−m+ 1)/

√
(2n+ 1)(2n+ 3) are two coefficients related to the amplitude of the

spherical harmonics. These two set of coefficients are identical in Baresch et al. (2013b) and
Sapozhnikov & Bailey (2013). The ones obtained by Silva (2011) contain an error coming from
the first step described above that required a reindexing of the series. The termCn = R∗

n + Rn+1 +
2R∗

nRn+1 is the coefficient that makes explicit the dependence of the radiation force on the scat-
tered waves, R∗

nRn+1, or the cross product between incident and scattered waves, R∗
n + Rn+1. This

coefficient can also be written with the S-matrix, Sn = 1 + 2Rn, so that we have 2Cn = S∗
nSn+1 − 1.

This relates the outgoing modes of order n and n+ 1 (Sapozhnikov & Bailey 2013, Marston &
Zhang 2017). Using equations 32 and 34 of Sapozhnikov & Bailey (2013), one can straightfor-
wardly show that the two expressions of the radiation force are identical. This complete model
gives a quantitative prediction of the radiation force. Some examples are given below for a bead
of silica.

One specific feature of selective tweezers compared to standing wave traps is the selectivity.
In the following text, (r, θ , z) refer to cylindrical coordinates, with z corresponding to the prin-
cipal axis of the one-sided spherical vortex. The radial selectivity of a one-sided spherical vortex
at 50 MHz (corresponding to a wavelength of 30 µm) is shown in Figure 5a. A negative force
means that the bead is pulled toward the vortex axis. The trap has a radius of 0.42λ when the
numerical aperture is 0.87, corresponding to a half angle of 60◦. The radiation pressure scales in
nano-Newtons for a moderate acoustic driving pressure of 1 MPa. This trapping force is relevant
compared to forces in biological object manipulation and deformation. The azimuthal force is of
similar amplitude (Figure 5b). A bead initially located in the potential well will spiral around the
vortex axis and in the end reach its equilibrium position at r = 0.

The axial selectivity and trap stiffness are also strongly dependent on the numerical aperture
(Figure 6a). The stiffness, selectivity, and force amplitude are weaker in the axial direction than
in the lateral one since the beam is progressive on this axis. The force is positive (thus pushing the
particle) when the bead is located before the focus.On the contrary, when the bead is downstream,
the axial force is negative (thus pulling the bead toward the focus). This essential and specific
feature of optical tweezers (Ashkin 2011) ensures trapping in the three dimensions. When the
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Figure 5

Radial (a) and azimuthal (b) forces of a one-sided spherical vortex on a sphere of silica; the wavelength λ is 30 µm. Forces are computed
for a maximum pressure of 1 MPa at the focus and a sphere of radius 0.15λ. The trap stiffness and the selectivity increase with the
numerical aperture.

radius of the bead is increased (Figure 6b), the scattering force increases, and for a bead that is
too large the axial trapping is lost.

3D trapping at the focus of a one-sided focused acoustical vortex was demonstrated numerically
from these formulas (Baresch et al. 2013a) and then experimentally (Baresch 2014, Baresch et al.
2016). Here, the tweezers’ pulling restoring force was high enough to compensate for the particle
weight and the streaming drag force. A one-sided focused acoustical vortex was also able to push
upward and levitate particles in air (Marzo et al. 2015).
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Figure 6

The axial force of a one-sided spherical vortex on a sphere of silica; the wavelength λ is 30 µm. (a) The trap stiffness increases with the
numerical aperture. Forces are computed for a maximum pressure of 1 MPa at the focus and a sphere of radius 0.15λ. (b) The axial
restoring force is lost for spheres that are too large.
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4.3. Fluid Manipulation with Acoustical Vortices

Acoustical vortices carry pseudo-angular momentum.Thus, the nonlinear transfer of this pseudo-
angular momentum to the fluid through wave attenuation results in a streaming flow whose topol-
ogy is mainly controlled by the topology of the acoustic vortex. Anhäuser et al. (2012) provided
the first estimation of this effect. Then, Riaud et al. (2014) resolved the complete problem by ex-
tending Eckart’s theory to the case of Bessel cylindrical acoustical vortices. Starting from Eckart’s
vorticity diffusion equation in the steady case,

��̄ = − b
ρ2
0
∇ρ̃ × ∇ ∂ρ̃

∂t
,

with �̄ = ∇ × v̄ and ρ̃ given by Equation 45, they were able to compute the velocity field in the
same configuration as Eckart, i.e., in an infinitely long cylinder of radius r0 axially illuminated
by a beam of finite radial extension, r1 < r0. They demonstrated that acoustical streaming in this
configuration is the superposition of a poloidal flow (also predicted by Eckart in the case of a plane
wave) and a toroidal flow that relies on the helical nature of the acoustical vortex. Interestingly,
they showed that in some specific configurations, the direction of the poloidal flow can be reversed
compared to the plane wave case, and the fluid can recirculate toward the center of the transducer
(Figure 7). This can be explained by the existence of a shadow zone at the center of the beam
wherein the fluid can recirculate.

Soon after, Hong et al. (2015) showed experimentally the toroidal flow predicted by this
theory in an essentially 2D configuration. More recently, Baresch et al. (2018) evidenced the flow
produced by a one-sided focused vortex and showed that the fluid is both pushed in the direction
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Figure 7

Flow structures induced by Bessel cylindrical vortices. The lines delimit the transition between attractor
vortices, with a poloidal flow oriented toward the center of the source (located downward), and repeller
vortices corresponding to the classic configuration, where the fluid is pushed away from the source. The
ratio r0/r1 is the ratio between the radius of the cylinder and the lateral extension of the beam, l is the
topological charge of the vortex, and k⊥ is the projection of the wave vector in a plane orthogonal to the
beam axis. Figure adapted with permission from Riaud et al. (2014).
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of the wave propagation and set in rotation around the propagation axis due to the helical nature
of the wave. From a theoretical perspective, M. Baudoin et al. (submitted manuscript) calculated
analytically the orbital acoustic streaming produced by a Bessel spherical vortex. As the resolution
of this problem from Eckart’s equation is intricate, they proposed another method based on
Equation 29 and the use of Green’s function of the Stokes equation. They showed that the
resulting flow is purely orbital (since ϕ is the only propagative component of a Bessel spherical
vortex) with a confined flow structure located near the focal point.

SUMMARY POINTS

1. The manipulation of particles and fluids with acoustic waves is enabled by two nonlinear
effects: acoustic radiation pressure and acoustic streaming, respectively.

2. Since both acoustic and optical radiation pressure are proportional to the wave intensity
divided by the sound speed, acoustic tweezers enable the application of forces several
orders of magnitude larger than their optical counterpart at the same wave intensity.

3. Acoustic tweezers relying on plane standing waves can trap and move particles collec-
tively, but themultiplicity of nodes and antinodes does not allow one tomove one particle
independently of other neighboring particles, i.e., to trap particles selectively.

4. To achieve selectivity, we need to localize the acoustic energy. Since many particles of
interest are trapped at acoustic wave pressure nodes, focused waves cannot be used in
this case. Localized traps for this type of particles can be achieved with some specific
wave structures called acoustical vortices, which allow one to both focalize the acoustic
energy and obtain a pressure minimum at the focal point surrounded by a bright ring,
which serves as a trap.

5. To achieve 3D selective trapping with one-sided tweezers, it is necessary to generate a
wave structure that compensates for the particles’ tendency to be pushed in the wave
direction. This task can be be achieved with one-sided spherical vortices.

6. Acoustical vortices can generate some localized flow structures, whose topology relies
on the topology of the acoustical vortex.

FUTURE ISSUES

1. Particles assembly: The 3D selective manipulation of particles with acoustic tweezers
has recently been demonstrated. It is essential in the future to demonstrate that it is not
only possible to capture particles individually but also to assemble them to form clusters
of precisely assembled objects.

2. Force calibration: For applications, it would also be necessary to calibrate the force ap-
plied by the tweezers as a function of the input power. Indeed, this calibration of the force
would lead (as in optics but with forces several orders or magnitude larger) to many ap-
plications (e.g., the study of cells’ mechanotransduction, the resistance of bio-objects to
mechanical solicitations).

3. Furtherminiaturization: A significant step has recently been achieved in theminiaturiza-
tion of acoustic tweezers. Nevertheless, acoustic coherent sources exist up to gigahertz,
paving the way toward micrometric and even submicrometric particles manipulation.
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The manipulation at this scale is both a technical and scientific challenge, since it is nec-
essary to understand how acoustic radiation pressure and acoustic streaming will evolve
at these scales.

4. Harmless selective manipulation of biological objects: It is also necessary to demonstrate
that acoustical traps with large trapping force can be obtained at micrometric scales
with harmless acoustic signals for biological objects. This is critical for all applications
involving cells and microorganisms.

5. Measurement of acoustic streaming induced by acoustical vortices:Quantitative compar-
isons between experimentally synthesized velocity fields and theoretical developments
are still lacking.
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